

DPP - 3 (KTG)

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/57

Video Solution on YouTube:-

https://youtu.be/R21yaok6WpQ

Q 1. Calculate the total number of degree of freedom for a mole of diatomic gas at STP
(a) 30.10×10^{23}
(b) 3.10×10^{23}
(c) 12.24×10^{20}
(d) 3.14×10^{17}

Q 2. At what temperature, the kinetic energy of a gas molecule is half of the value at $27^{\circ} \mathrm{C}$?
(a) $123^{\circ} \mathrm{C}$
(b) 123 K
(c) -123 K
(d) $-123^{\circ} \mathrm{C}$

Q 3. The number of degrees of freedom for a rigid diatomic molecule is
(a) 3
(b) 5
(c) 6
(d) 7

Q 4. The energy associated with each degree of freedom of a molecule
(a) $\frac{1}{2} R T$
(b) $\frac{1}{2}-K T$
(c) $\frac{3}{2} R T$
(d) $\frac{3}{2} K T$

Q 5. A polyatomic gas with (n) degress of freedom has a mean energy per molecule given by
(a) $\frac{n}{2} R T$
(b) $\frac{1}{2} R T$
(c) $\frac{n}{2} k T$
(d) $\frac{1}{2} k T$

Q 6. The number of degrees of freedom of molecules of argon gas is
(a) 1
(b) 3
(c) 5
(d) 7

Q 7. Helium gas is filled in a closed vessel (having negligible thermal expansion coefficient) when it is heated from 300 K to 600 K , then average kinetic energy of helium atom will be
(a) $\sqrt{2}$ times
(b) 2 times
(c) unchanged
(d) half

Q 8. The average rotational kinetic energy of hydrogen molecule at a temperature T is E . The average translational kinetic energy of helium at same temperature will be:
(a) $\frac{2 E}{3}$
(b) $\frac{5 E}{3}$
(c) E
(d) $\frac{3 E}{2}$

Q 9. The average translational energy and the rms speed of molecules in a sample of oxygen gas at 300 K are $6.21 \times 10^{-21} \mathrm{~J}$ and $484 \mathrm{~m} / \mathrm{s}$ respectively The corresponding values at 600 K are nearly (assuming ideal gas behavior)
(a) $12.42 \times 10^{-21} \mathrm{~J}, 928 \mathrm{~m} / \mathrm{s}$
(b) $8.78 \times 10^{-21} \mathrm{~J}, 684 \mathrm{~m} / \mathrm{s}$
(c) $6.21 \times 10^{-21} \mathrm{~J}, 968 \mathrm{~m} / \mathrm{s}$
(d) $12.42 \times 10^{-21} \mathrm{~J}, 684 \mathrm{~m} / \mathrm{s}$

Q 10. One kg of a diatomic gas is at a pressure of $8 \times 10^{4} \mathrm{~N} / \mathrm{m}^{2}$. The density of the gas is $4 \mathrm{~kg} / \mathrm{m}^{3}$. What is the energy of the gas due to its thermal motion?
(a) $5 \times 10^{4} \mathrm{~J}$
(b) $6 \times 10^{4} \mathrm{~J}$
(c) $7 \times 10^{4} \mathrm{~J}$
(d) $4 \times 10^{4} \mathrm{~J}$

Q 11. The average kinetic energy of H_{2} molecules at 300 K is E at the same temperature the average kinetic energy of O_{2} molecules is:
(a) E
(b) $\frac{E}{4}$
(c) $\frac{E}{16}$
(d) $16 E$

Answer Key

Q. 1	a	Q. 2	d	Q. 3	b	Q. 4	b	Q. 5	c
Q. 6	b	Q. 7	b	Q. 8	d	Q. 9	d	Q.10	a
Q. 11	a								

