

DPP – 3 (KTG)

T T 1 C 1 C							
Video Solution on Website:-		https://phy	vsicsaholics.com/hc	ome/courseDetails/	57		
Video Solution on YouTube:-		https://youtu.be/R21yaok6WpQ					
Written Solutio	on on Website:-	https://phy	sicsaholics.com/no	te/notesDetalis/32			
Q 1.	Calculate the total n (a) 30.10×10^{23} (c) 12.24×10^{20}	umber of degree (b) 3.1 (d) 3.1	of freedom for a mole of 0×10^{23} 4×10^{17}	diatomic gas at STP			
Q 2.	At what temperature (a) 123°C	e, the kinetic ener (b) 123 K	rgy of a gas molecule is h (c) –123-K	alf of the value at 27°C? (d) –123°C			
Q 3.	The number of degree (a) 3	ees of freedom fo (b) 5	or a rigid diatomic molect (c) 6	ule is (d) 7			
Q 4.	The energy associate (a) $\frac{1}{2}RT$	ed with each deg (b) $\frac{1}{2}KT$	ree of freedom of a molec (c) $\frac{3}{2}RT$	cule (d) $\frac{3}{2}KT$			
Q 5.	A polyatomic gas w by (a) $\frac{n}{2}RT$	with (n) degress of (b) $\frac{1}{2}RT$	of freedom has a mean end (c) $\frac{n}{2}kT$	ergy per molecule given (d) $\frac{1}{2}kT$			
Q 6.	The number of degr (a) 1	ees of freedom o (b) 3	f molecules of argon gas (c) 5	is (d) 7			
Q 7.	Helium gas is filled when it is heated fro be (a) $\sqrt{2}$ times	in a closed vesse m 300 K to 600 I (b) 2 times	l (having negligible therm K, then average kinetic en (c) unchanged	al expansion coefficient) ergy of helium atom will (d) half			
Q 8.	The average rotation The average translat (a) $\frac{2E}{3}$	nal kinetic energ tional kinetic energe (b) $\frac{5E}{3}$	gy of hydrogen molecule orgy of helium at same ten (c) E	at a temperature T is E. nperature will be: (d) $\frac{3E}{2}$			
Q 9.	The average translat oxygen gas at 300 K values at 600 K are (a) 12.42×10^{-21} J, (c) 6.21×10^{-21} J, 9	tional energy and are 6.21 × 10 ⁻ nearly (assuming 928 m/s 968 m/s	the rms speed of molecu ²¹ J and 484m/s respective g ideal gas behavior) (b) 8.78×10^{-21} J, 684 r (d) 12.42×10^{-21} J, 684	les in a sample of ely The corresponding m/s - m/s			

- Q 10. One kg of a diatomic gas is at a pressure of $8 \times 10^4 N/m^2$. The density of the gas is $4 \text{kg}/m^3$. What is the energy of the gas due to its thermal motion? (a) $5 \times 10^4 \text{J}$ (b) $6 \times 10^4 \text{J}$ (c) $7 \times 10^4 \text{J}$ (d) $4 \times 10^4 \text{J}$
- Q 11. The average kinetic energy of H_2 molecules at 300K is E at the same temperature the average kinetic energy of O_2 molecules is:
 - average kinetic energy of O_2 molecules is: (a) E (b) $\frac{E}{4}$ (c) $\frac{E}{16}$ (d) 16E

Answer Key

Q.1 a	Q.2	d	Q.3	b	Q.4	b	Q.5	c
Q.6 b	Q.7	b	Q.8	d	Q.9	d	Q.10	a
Q.11 a					<u> </u>		<u> </u>	